Bounding the least prime ideal in the Chebotarev Density Theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Forms and the Chebotarev Density Theorem

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

A motivic Chebotarev density theorem

We define motivic Artin L-functions and show that they specialize to the usual Artin L-functions under the trace of Frobenius. In the last section we use our L-functions to prove a motivic analogue of the Chebotarev density theorem.

متن کامل

S - Fuzzy Prime Ideal Theorem

The notions of a S fuzzy ∧ sub semi lattice, a S fuzzy ideal and a S fuzzy prime ideal of a bounded lattice with truth values in a bounded ∧ sub semi lattice S are introduced which generalize the existing notions with truth values in a unit interval of real numbers. Finally, S fuzzy prime ideal theorem is proved. 2010 AMS Classification: 03G10, 46H10, 06D50, 08A72

متن کامل

THE EFFECTIVE CHEBOTAREV DENSITY THEOREM AND MODULAR FORMS MODULO m

Suppose that f (resp. g) is a modular form of integral (resp. half-integral) weight with coefficients in the ring of integers OK of a number field K. For any ideal m ⊂ OK , we bound the first prime p for which f | Tp (resp. g | Tp2) is zero (mod m). Applications include the solution to a question of Ono [AO] concerning partitions.

متن کامل

The Dual of a Strongly Prime Ideal

Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Functiones et Approximatio Commentarii Mathematici

سال: 2017

ISSN: 0208-6573

DOI: 10.7169/facm/1651